ALK7 protects against pathological cardiac hypertrophy in mice.

نویسندگان

  • He Huang
  • Yanhong Tang
  • Gang Wu
  • Yang Mei
  • Wanli Liu
  • Xiaoxiong Liu
  • Nian Wan
  • Yu Liu
  • Congxin Huang
چکیده

AIMS Activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, is expressed in various tissues, including the heart. However, the participation of ALK7 in the regulation of cardiac hypertrophy has not yet been studied. Here, we sought to determine the regulatory role and underlying mechanisms of ALK7 in cardiac hypertrophy. METHODS AND RESULTS We performed aortic banding (AB) in ALK7-knockout mice, cardiac-specific ALK7-transgenic mice, and the wild-type littermates of these mice. Cardiac hypertrophy was evaluated using pathological analysis, echocardiographic measurement, haemodynamic measurement, and molecular analysis. Our results revealed that ALK7 disruption led to an aggravated cardiac hypertrophic response that was accompanied by increased cardiac fibrosis and reduced contractile function, whereas cardiac-specific ALK7 overexpression exhibited the opposite phenotype in response to pressure overload. Similarly, ALK7 protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we demonstrated that ALK7-dependent cardioprotection was mediated largely through inhibition of the MEK-ERK1/2 signalling pathway. CONCLUSION Our data suggest that ALK7 acts as a novel regulator of pathological cardiac hypertrophy via the negative regulation of MEK-ERK1/2 signalling and may serve as a potential therapeutic target for pathological cardiac hypertrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin‐Converting Enzyme 3 (ACE3) Protects Against Pressure Overload‐Induced Cardiac Hypertrophy

BACKGROUND Angiotensin-converting enzyme 3 (ACE3) is a recently defined homolog of ACE. However, the pathophysiological function of ACE3 is largely unknown. Here, we aim to explore the role of ACE3 in pathological cardiac hypertrophy. METHODS AND RESULTS Neonatal rat cardiomyocytes (NRCMs) with gain and loss of function of ACE3 and mice with global knockout or cardiac-specific overexpression ...

متن کامل

Cardiac Hypertrophy Stem Cell Antigen 1 Protects Against Cardiac Hypertrophy and Fibrosis After Pressure Overload

Stem cell antigen (Sca) 1, a glycosyl phosphatidylinositol-anchored protein localized to lipid rafts, is upregulated in the heart during myocardial infarction and renovascular hypertension-induced cardiac hypertrophy. It has been suggested that Sca-1 plays an important role in myocardial infarction. To investigate the role of Sca-1 in cardiac hypertrophy, we performed aortic banding in Sca-1 ca...

متن کامل

Stem cell antigen 1 protects against cardiac hypertrophy and fibrosis after pressure overload.

Stem cell antigen (Sca) 1, a glycosyl phosphatidylinositol-anchored protein localized to lipid rafts, is upregulated in the heart during myocardial infarction and renovascular hypertension-induced cardiac hypertrophy. It has been suggested that Sca-1 plays an important role in myocardial infarction. To investigate the role of Sca-1 in cardiac hypertrophy, we performed aortic banding in Sca-1 ca...

متن کامل

1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level

Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...

متن کامل

T-cadherin is critical for adiponectin-mediated cardioprotection in mice.

The circulating, adipocyte-secreted hormone adiponectin (APN) exerts protective effects on the heart under stress conditions. The receptors binding APN to cardiac tissue, however, have remained elusive. Here, we report that the glycosyl phosphatidylinositol–anchored cell surface glycoprotein T-cadherin (encoded by Cdh13) protects against cardiac stress through its association with APN in mice. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 108 1  شماره 

صفحات  -

تاریخ انتشار 2015